翻訳と辞書
Words near each other
・ Banabil
・ Banabo
・ Banabona
・ Banabuiú
・ Banabuiú River
・ Banacek
・ Banach *-algebra
・ Banach algebra
・ Banach algebra cohomology
・ Banach bundle
・ Banach bundle (non-commutative geometry)
・ Banach fixed-point theorem
・ Banach function algebra
・ Banach game
・ Banach Journal of Mathematical Analysis
Banach limit
・ Banach manifold
・ Banach measure
・ Banach space
・ Banach's matchbox problem
・ Banachek
・ Banachiewicz (crater)
・ Banachy
・ Banach–Alaoglu theorem
・ Banach–Mazur compactum
・ Banach–Mazur game
・ Banach–Mazur theorem
・ Banach–Stone theorem
・ Banach–Tarski paradox
・ Banadak Sadat


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Banach limit : ウィキペディア英語版
Banach limit
In mathematical analysis, a Banach limit is a continuous linear functional
\phi: \ell^\infty \to \mathbb
defined on the Banach space \ell^\infty of all bounded complex-valued sequences
such that for all sequences x=(x_n), y=(y_n) in \ell^\infty, and complex numbers \alpha:
# \phi(\alpha x+y)=\alpha\phi(x)+\phi(y) (linearity);
# if x_n\geq 0 for all n\in \mathbb, then \phi(x)\geq 0 (positivity);
# \phi(x)=\phi(Sx), where S is the shift operator defined by (Sx)_n=x_ (shift-invariance);
# if x is a convergent sequence, then \phi(x)=\lim x.
Hence, \phi is an extension of the continuous functional
\lim x:c\mapsto \mathbb C
where c \subset\ell^\infty is the complex vector space of all sequences with converge to a (usual) limit in \mathbb C.
In other words, a Banach limit extends the usual limits, is linear, shift-invariant and positive.
However, there exist sequences for which the values of two Banach limits do not agree.
We say that the Banach limit is not uniquely determined in this case.
As a consequence of the above properties, a Banach limit also satisfies:
: \liminf_ x_n\le\phi(x) \le \limsup_x_n
The existence of Banach limits is usually proved using the Hahn–Banach theorem (analyst's approach), or using ultrafilters (this approach is more frequent in set-theoretical expositions).
These proofs necessarily use the Axiom of choice (so called non-effective proof).
==Almost convergence==
There are non-convergent sequences which have a uniquely determined Banach limit.
For example, if x=(1,0,1,0,\ldots),
then x+S(x)=(1,1,1,\ldots) is a constant sequence, and
:2\phi(x)=\phi(x)+\phi(Sx)=\phi(x+Sx)=\phi((1,1,1,\ldots))=\lim((1,1,1,\ldots))=1
holds.
Thus, for any Banach limit, this sequence has limit 1/2.
A bounded sequence x with the property, that for every Banach limit \phi the value \phi(x) is the same, is called almost convergent.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Banach limit」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.